Accelerating Development of Treatments for Arthritis

The synovium is a membrane-like structure that lines the knee joint and helps to keep the joint happy and healthy, mainly by producing and maintaining synovial fluid. Inflammation of this tissue is implicated in the onset and progression of arthritic diseases such as rheumatoid and osteoarthritis. Therefore, treatments that target the synovium are promising in treating these diseases. However, we need better models in the laboratory that allow us to find and test new treatments. We have developed an organ-on-a-chip based model of the human synovium, and its associated vasculature, to address this need.

Researchers have developed a new organ-on-a-chip model of the human synovium, a membrane-like tissue that lines the joints. The model could help researchers to better understand the mechanisms of arthritis and to develop new treatments for this group of debilitating diseases.

The new synovium-on-a-chip model is a three-dimensional microfluidic device that contains human synovial cells and blood vessel cells. The device is subjected to mechanical loading, which mimics the forces applied to the synovium during joint movement.

The developed synovium-on-a-chip model was able to mimic the behavior of native human synovium, producing key synovial fluid components and responding to inflammation. This suggests that the new platform has immense potential to help researchers understand disease mechanisms and identify and test new therapies for arthritic diseases.

“Our model is the first human, vascularised, synovium-on-a-chip model with applied mechanical loading and successfully replicates a number of key features of native synovium biology,” said Dr Timothy Hopkins joint lead author of the study. “The model was developed upon a commercially available platform (Emulate Inc.), that allows for widespread adoption without the need for specialist knowledge of chip fabrication. The vascularised synovium-on-a-chip can act as a foundational model for academic research, with which fundamental questions can be addressed, and complexity can be added. In addition, we envisage that our model could eventually form part of the drug discovery pipeline in an industrial setting.”

The researchers are currently using the synovium-on-a-chip model to study the disease mechanisms of arthritis and to develop stratified and personalized organ-on-a-chip models of human synovium and associated tissues.

“We believe that our synovium-on-a-chip model, and related models of human joints currently under development in our lab, have the potential to transform pre-clinical testing, streamlining delivery of new therapeutics for treatment of arthritis,” Prof. Martin Knight said. “We are excited to share this model with the scientific community and to work with industry partners to bring new treatments to patients as quickly as possible.”


Sources: 

Clare L Thompson, Timothy Hopkins, Catrin Bevan, Hazel R C Screen, Karina T Wright, Martin M Knight. Human vascularised synovium-on-a-chip: a mechanically stimulated, microfluidic model to investigate synovial inflammation and monocyte recruitment. Biomedical Materials, 2023; 18 (6): 065013 DOI: 10.1088/1748-605X/acf976

Queen Mary University of London. “New organ-on-a-chip model of human synovium could accelerate development of treatments for arthritis.” ScienceDaily. ScienceDaily, 12 October 2023. <www.sciencedaily.com/releases/2023/10/231012111714.htm>.

Materials provided by Queen Mary University of London. Note: Content may be edited for style and length.

Images from: 

Photo by Mali Maeder

https://www.pexels.com/es-es/foto/persona-nadando-en-un-cuerpo-de-agua-1415810/